Algebra I - Grade 9

Units		Common Core Standards	Vocabulary	Pacing

Algebra I - Grade 9

	Units	Common Core Standards	Vocabulary	Pacing
	Chapter 4, Section 4 Chapter 5, Section 1Chapter 5, Section 2 Chapter 5, Section 3 Chapter 5, Section 5 Chapter 5, Section 6 Chapter 5, Section 7	A-CED.1. Create equations and inequalities in one variable and use them to solve problems. A-CED.2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. A-REI.3. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. G-GPE.5. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems. S-ID.7. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	Slope Rate of change Slope-intercept form Point-slope form Standard form	16 days

Algebra I - Grade 9

	Units	Common Core Standards	Vocabulary	Pacing
	Chapter 1, Section 6 Chapter 2, Section 1 Chapter 4, Section 1 Chapter 4, Section 5 Chapter 5, Section 4 Chapter 11, Section 3 Chapter 6, Section 6 Chapter 6, Section 7	A-CED.1. Create equations and inequalities in one variable and use them to solve problems. A-CED.2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. S-ID.1. Represent data with plots on the real number line (dot plots, histograms, and box plots). S-ID.6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. S-ID.7. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. S-ID.9. Distinguish between correlation and causation. F-BF.4. Find inverse functions. Assessments: Multiple Quizzes Final Test	Data Bar graph Line graph Real numbers Real number line Origin Integers Graph Plotting Opposites Absolute value Coordinate plane Ordered pair x-coordinate y-coordinate Graph Scatter plot Constant of variation Direct variation Inverse variation Stem-and-leaf plot Measure of central tendency Mean Median Mode Box-and-whisker plot Quartiles Best-fitting line Positive correlation Negative correlation Relatively no correlation	16 days

Algebra I - Grade 9

Units		Common Core Standards	Vocabulary	Pacing
		$\begin{array}{l}\text { A-CED.1. Create equations and inequalities in one variable and use } \\ \text { them to solve problems. }\end{array}$		
A-CED.2. Create equations in two or more variables to represent				
relationships between quantities; graph equations on coordinate axes				

Algebra I - Grade 9

	Units	Common Core Standards	Vocabulary	Pacing
	Chapter 1, Section 7 Chapter 3, Section 7 Chapter 4, Section 8 Chapter 8, Section 5 Chapter 8, Section 6 Chapter 9, Section 3 Chapter 11, Section 8 Chapter 12, Section 1	A-SSE.3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. A-CED.1. Create equations and inequalities in one variable and use them to solve problems. A-CED.3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. A-CED.4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. A-REI.10. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve. F-IF.1. Understand that a function from one set to another set assigns to each element of the domain exactly one element of the range. F-IF.2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. F-IF.4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. F-IF.5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. F-IF.6. Calculate and interpret the average rate of change of a function over a specified interval. Estimate the rate of change from a graph. F-IF.7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. F-IF.8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. F-IF.9. Compare properties of two functions each represented in a different way. F-BF.3. Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. F-LE.1. Distinguish between situations that can be modeled with linear functions and with exponential functions. F-LE.2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs. F-LE.3. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or as a polynomial function. F-LE.5. Interpret the parameters in a linear or exponential function in terms of a context. Assessments: Multiple Quizzes Final Test	Function Input Output Input-output table Domain Range Formula Relation Function notation Graph of a function Exponential growth Exponential decay Quadratic function Standard form Parabola Vertex Axis of symmetry Rational equation Rational function Hyperbola Center Asymptote Square root function	18 days

Algebra I - Grade 9

Algebra I - Grade 9

	Units	Common Core Standards	Vocabulary	Pacing
	Chapter 8, Section 1Chapter 8, Section 2 Chapter 8, Section 3 Chapter 10, Section 1 Chapter 10, Section 2 Chapter 10, Section 3 Chapter 10, Section 4 Chapter 11, Section 7	A-SSE.1. Interpret expressions that represent a quantity in terms of its context. A-SSE.2. Use the structure of an expression to identify ways to rewrite it. A-SSE.3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. A-APR.1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. A-APR.3. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. A-APR.4. Prove polynomial identities and use them to describe numerical relationships. F-IF.8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.	Exponential function Polynomial Standard form Degree Degree of a polynomial Leading coefficient Monomial Binomial Trinomial FOIL Factored form Zero-product property Polynomial long division	19 days

Algebra I - Grade 9

Units

Unit 8 - Quadratic Equations

Chapter 9, Section 1 Chapter 9, Section 4 Chapter 9, Section 5 Chapter 10, Section 5 Chapter 10, Section 6 Chapter 10, Section 7 Chapter 10, Section 8 Chapter 12, Section 4

Common Core Standards

N-CN.7. Solve quadratic equations with real coefficients that have complex solutions.
N-CN.8. (+) Extend polynomial identities to the complex numbers.
N-CN.9. (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
A-SSE.2. Use the structure of an expression to identify ways to rewrite it.
A-SSE.3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
A-APR.4. Prove polynomial identities and use them to describe numerical relationships.
A-CED.1. Create equations and inequalities in one variable and use them to solve problems.
A-CED.2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
A-REI.4. Solve quadratic equations in one variable.
A-CED.1. Create equations and inequalities in one variable and use them to solve problems.
A-CED.2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
A-REI.4. Solve quadratic equations in one variable.
F-IF.8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

Assessments:
 Multiple Quizzes
 Final Test

Vocabulary
 Pacing

Square root
Positive square root
Negative square root
Radicand
Perfect squares
Irrational number
Radical expression
Quadratic equation
Standard form
Leading coefficient
Roots
Quadratic formula
Factor
Prime
Factor completely

Algebra I - Grade 9

	Units	Common Core Standards	Vocabulary	Pacing
	Chapter 9, Section 2 Chapter 12, Section 2 Chapter 12, Section 3 Chapter 11, Section 4 Chapter 11, Section 5 Chapter 11, Section 6	\mathbf{N}-RN.1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. N-RN.2. Rewrite expressions involving radicals and rational exponents using the properties of exponents. N-RN.3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational. A-REI.2. Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise. F-BF.4. Find inverse functions. Assessments: Multiple Quizzes Final Test	Simplest form Conjugates Rational number Rational expression Simplified Geometric probability Least common denominator	14 days

Algebra I - Grade 9				
Units		Common Core Standards		

